Business PreCalculus MATH 1643 Section 004, Spring 2013 Lesson 3: Factoring

The process of factoring polynomials that we study in this lesson "reverses" the process of multiplying polynomials that we studied in the previous lesson. To factor any *sum of terms* means to write as a *product of factors*.

Definition 1. Finding Greatest Common Factor or (Divisor): The term ax^m is the greatest common factor of a polynomial in x if

- 1. a is the greatest integer that divides each of the polynomial coefficients.
- 2. m is the smallest exponent on x found in every term of the polynomial.

Example 1. Factor $16x^3 + 24x^2$ and $5x^4 + 20x^2 - 25x$. Solutions:

$$16x^{3} + 24x^{2}$$

= $8x^{2}(2x) + 8x^{2}(4)$
= $8x^{2}(2x + 4)$.

$$5x^{4} + 20x^{2} - 25x$$

= 5x(x³) + 5x(4x) + 5x(-5)
= 5x(x³ + 4x - 5).

Definition 2. Factoring $Ax^2 + Bx + C$ when $A \neq 1$:

$$Ax^{2} + Bx + C$$

= $(ax + b)(cx + d)$
= $acx^{2} + (ad + bc)x + bd$.

Therefore, we need to find integers a, b, c, and d such that A = ac C = bd B = ad + bc.

Example 2. Factor $6x^2 + 17x + 7$ and $4x^2 - 8x - 5$. Solutions:

$$6x^2 + 17x + 7 = (6x + \Box)(x + \blacksquare)$$

or

$$6x^{2} + 17x + 7 = (2x + \Diamond)(3x + \blacklozenge)$$

$$6x^{2} + 17x + 7$$

= (2x + +1)(3x + 7).
$$4x^{2} - 8x - 5 = (4x + \Delta)(x + \blacktriangle)$$

or

$$4x^{2} - 8x - 5 = (2x + ∇)(2x + ▼)$$
$$4x^{2} - 8x - 5$$
$$= (2x + 1)(2x - 5).$$

Definition 3. Factoring by Grouping: We can sometimes group the terms of a polynomial in such a way that each group has a common factor. This technique is called factor by grouping.

Example 3. Factor $6x^3 - 4x - 3x^2 + 2$ and $x^2 + 4x + 4 - y^2$. Solutions:

$$6x^{3} - 4x - 3x^{2} + 2$$

= $(6x^{3} - 3x^{2}) + (-4x + 2)$
= $3x^{2}(2x - 1) + (-2)(2x - 1)$
= $(2x - 1)(3x^{2} - 2).$

$$x^{2} + 4x + 4 - y^{2}$$

= $(x^{2} + 4x + 4) - y^{2}$
= $(x + 2)^{2} - y^{2}$
= $(x + 2 + y)(x + 2 - y).$

Definition 4. Irreducible Polynomial: A polynomial with no common factors is called <u>irreducible</u>.
Example 4. 1. The polynomial ax + c is irreducible if a and c have no common factors.

2. Every polynomial of the form $x^2 + a^2$ is irreducible.

Example 5. Factoring:

$$25x^{2} - 49$$

= $(5x)^{2} - 7^{2}$
= $(5x + 7)(5x - 7)$

Example 6. Factoring:

$$x^{2} + 10x + 25$$

= $x^{2} + 2.5.x + 5^{2}$
= $(x + 5)^{2}$.

Example 7. Factoring:

$$8x^{3} + 125$$

= $(2x)^{3} + 5^{3}$
= $(2x + 5)((2x)^{2} - 2x \cdot 5 + 5^{2})$
= $(2x + 5)(4x^{2} - 10x + 25).$

Example 8. Factoring:

$$x^{4} - 16$$

= $(x^{2})^{2} - 4^{2}$
= $(x^{2} + 4)(x^{2} - 4)$
= $(x^{2} + 4)(x + 2)(x - 2).$